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Abstract— Identifying predictive world models for robots in
novel environments from sparse online observations is essential
for robot task planning and execution in novel environments.
However, existing methods that leverage differentiable pro-
gramming to identify world models are incapable of jointly
optimizing the geometry, appearance, and physical properties
of the scene. In this work, we introduce a novel rigid object
representation that allows the joint identification of these prop-
erties. Our method employs a novel differentiable point-based
geometry representation coupled with a grid-based appearance
field, which allows differentiable object collision detection and
rendering. Combined with a differentiable physical simulator,
we achieve end-to-end optimization of world models, given the
sparse visual and tactile observations of a physical motion
sequence. Through a series of world model identification tasks
in simulated and real environments, we show that our method
can learn both simulation- and rendering-ready world models
from only one robot action sequence.

I. INTRODUCTION

An accurate internal model of a robot about how its
actions can affect the surrounding environment is essential
for robot planning and control. Such a model, which we
refer to as a world model, needs to render realistic raw
observations such as RGB images from arbitrary viewpoints
and predict consistent and accurate physical interactions.
However, constructing such a model from raw observations
in novel real-world environments remains challenging as it
requires the identification of the geometry parameters that
describe the shape of all objects (e.g. vertices and faces of
a mesh), appearance parameters that define how the objects
look when rendered (e.g. color and reflectance), and physical
parameters (e.g. mass) of the objects in the scene. These
parameters are usually partially observable, and robots are
typically limited in time and computational resources.

Recently, there has been growing interest in learning world
models from large offline datasets of action-labeled videos
using generative modeling techniques [1], [2], [3], [4]. How-
ever, these black-box models are susceptible to distribution
shifts and cannot infer properties such as the coefficient of
friction. In addition, they are not physically consistent and
cannot provide physical information such as contact forces,
which are essential for downstream tasks. Meanwhile, an
alternative approach that identifies the geometry, appearance,
and physical parameters (GAP) of the environment with
strong priors coming from knowledge of physics can result
in a generalizable and physically consistent world model.

1Y. Zhu, T. Xiang, and A. Dollar are with the Department
of Mechanical Engineering and Materials Science, Yale University,
New Haven, United States. {yifan.zhu, tianyi.xiang,
aaron.dollar}@yale.edu 2Z. Pan is an independent researcher.
zherong.pan.usa@gmail.com

Error 
function

ௗ

Shape,  
Appearance and 
Physical Parameters

𝜕ℒ

𝜕𝜃

Observation

Differentiable simulator & Rendering

Fig. 1. From the visual and tactile observations of a single robot push
(top), our method jointly optimizes the shape, appearance, and physical
parameters of a world model consisting of rigid objects in the form of a
rigid body simulator (bottom, the robot arm is not rendered in this picture
and the end-effector is treated as a floating blue sphere robot).

Many existing works take advantage of differentiable
simulators as strong physics priors that allow efficient identi-
fication of physical parameters such as inertia and coefficient
of friction [5], [6], [7]. Differentiable simulators allow the
gradient-based optimization of mass-inertial properties and
frictional coefficients to match a physical motion sequence
to sparse robot observations. However, these works assume
known geometries and appearances of the objects in the
scene and do not allow the algorithm to adapt the GAP
simultaneously.

On the other hand, we have witnessed recent advances in
learnable geometry and appearance models, such as Neural
Radiance Fields (NeRF) [8] and Gaussian Splatting (GS) [9].
These methods build the rendering equation into a learnable
representation to enable the identification of geometries and
appearances from raw observations. However, rigid body
simulators [10] typically require the use of volumetric rep-
resentations with a clear definition of object surfaces such
as convex hulls to detect collisions and penetration depths.
Unfortunately, NeRF and GS are incompatible with the
requirements of rigid body simulators since NeRF represents
objects with a continuous neural field and GS with individual
3D Gaussians. To the best of the authors’ knowledge, no
existing method allows the simultaneous identification of the
GAP properties of a world model of rigid objects from sparse
robot observations.

To address these challenges, this work presents an object
representation that is compatible with general-purpose rigid
body simulators and allows the joint optimization of GAP.
As shown in Fig. 1, based on this representation, our work
enables the identification of a rigid world model in the form
of a full-fledged rigid body simulator from the observations



of one robot push. Our proposed representation is the combi-
nation of a recently proposed point-based shape representa-
tion Shape-as-Points (SaP) [11] and a grid-based appearance
field. SaP parameterizes an object’s geometry and topology
using a set of surface points along with normal directions.
It then uses differentiable Poisson reconstruction to recover
a smooth indicator field of object occupancy, which can be
converted to a mesh using a differentiable marching cubes
algorithm [12]. The texture of the vertices of the mesh is then
obtained by interpolating the appearance grid. Employing the
mesh in a differentiable rigid body simulator [13] that pro-
vides gradients for the physical parameters and contact points
of the objects, our method constructs a fully differentiable
pipeline for jointly optimizing the geometry, appearance, and
physical parameters. Our contributions are:
● A jointly differentiable representation of the shape,

appearance, and physical properties of objects.
● An algorithm for identifying world models online from

sparse robot observations, which we refer to as real-to-
sim, with an end-to-end differentiable simulation and
rendering pipeline.

We evaluate our method on a series of identification
problems in both simulated and real-world environments.
The results show that our method can infer accurate world
models from a single episode of robot interactions with
the environment. Finally, we will release the code and data
for reproducing the experiments in this paper once the
manuscript is accepted.

II. RELATED WORK

Our work is closely related to differentiable rigid body
simulators, learnable geometry and appearance models, and
identifying world models, and we review these areas of study
in this section.

A. Differentiable Rigid Body Simulator
Rigid body simulators are essential tools in robotics and

engineering for testing, verification, perception, control, and
planning. Traditional rigid body simulators are not differen-
tiable, but there have been many recently proposed differ-
entiable rigid body simulators [13], [14], [15], [16], [17],
[18] for facilitating downstream system identification, robot
planning, and policy optimization tasks. Different strategies
are adopted to enable the calculation of gradients for the
underlying non-differentiable contact dynamics, including
employing a smooth contact model [18], [15], [16], using
sub-gradients of the linear complementarity problem [14],
and implicit gradients of nonlinear optimization [13], [17].
However, most of these methods do not provide gradients
with respect to the geometry, with the exception of [17],
[13], [15]. In this work, we adopt the simulator proposed by
Strecke et al. [13] for its physical realism, numerical stability,
and fast computation from GPU acceleration.

B. Learnable Geometry and Appearance Models
Learning 3D geometry and appearance models from 2D

raw images is vital to robots’ understanding of the phys-
ical world. Earlier research has focused on learning only

the 3D geometries without appearance, including point-
cloud-based [19] models, convex-hull-based [20] models,
and learning implicit signed distance functions [21]. Neural
radiance fields (NeRF) is the first method that enables a
continuously learnable model for the full 3D appearance of
objects and scenes, which uses neural networks to parameter-
ize the spatial appearance properties and implicitly learn the
3D geometry. More recently, Kerbl et al. proposed Gaussian
Splatting (GS) [9], a non-parametric method that represents
the appearance of the scene with 3D Gaussians and sig-
nificantly improves the training and rendering speeds due
to their fit for fast GPU/CUDA-based rasterization. These
algorithms are capable of learning detailed 3D object and
scene appearances from sparse image-based observations.
However, NeRF and GS lack a clear definition of rigid object
surfaces as NeRF represents objects with a neural field and
GS with individual 3D Gaussians. Therefore, while there are
some initial attempts at integrating them with rigid body
simulators [22], [23], research for robust, physically correct,
and differentiable collision detections with these models is
still ongoing. In addition, NeRF and GS require many diverse
views of an object, which is unrealistic in typical robotic
manipulation applications.

Compared to standard 3D representations such as point
clouds, which do not allow volumetric collision detection, or
meshes, which do not allow large geometric and topological
changes during optimization, our SaP-based methods enjoy
the best of both worlds. Combined with a differentiable
renderer, our object representation then achieves end-to-end
image-based shape optimization.

C. World Models

Traditional system identification methods [24] identify
only the dynamics parameters from full state information.
However, to support diverse downstream robot tasks in
the real world, world models need to be built from raw
observations and support both accurate dynamics prediction
and photorealistic novel view synthesis. While existing works
have identified world models from raw image observations
using differentiable simulators [17], [13], [15], none supports
simultaneous optimization of geometry, appearance, and
physical parameters. Another line of work closely related to
ours is image-based generative world modeling. These works
aim to predict the next RGB frame based on the current
frame and action. These models are learned by training on
diverse datasets with generative modeling techniques such as
variational autoencoders [1], [2] and diffusion [3], [4]. The
key differences between our method and these works are that
our simulation, grounded in physics, is always physically
consistent and is a general-purpose rigid simulator that can
provide physical information such as contact forces. Purely
data-driven world models generalize poorly to novel scenar-
ios and their lack of physical information severely limits
their application to downstream robot tasks. Finally, a recent
work [25] proposed a method to use Gaussian Splatting along
with a particle-based simulator to track and reconstruct a
moving scene. Instead of identifying the physical parameters



of the scene, the method optimizes virtual forces attached
to each particle such that they match the observed object
trajectory. Therefore, although the method can be used as a
world model for prediction, the accuracy is severely limited.
We include this method as a baseline in our experiments in
Sec. V and demonstrate the limitation of this method.

III. PROBLEM DEFINITION

In this section, we describe our formulation of world
model identification. We assume the environment consists
of a rigid object and rigid terrain, whose physical properties
and appearances are parameterized by θ. A robot, equipped
with joint encoders and end-effector force sensors, interacts
with the object at T time instances: t1,⋯, tT , with a fixed
time step δt. At each time step, the robot observes its
end-effector pose et ∈ SE(3) and contact force f t ∈ R3.
Further, the robot is equipped with an RGB-D camera with
known intrinsics that observes the object through image ot ∈
RH×W×4 at camera pose ct ∈ SE(3). We further assume an
image segmentation mask mt ∈ RH×W×4 is provided for the
object, robot, and terrain. Therefore, the robot observations
are a sequence O = {⟨t, et, f t, ot, ct,mt⟩}, and our goal is
to estimate θ from the set of sparse observations O. We
formulate this problem as a physics-constrained optimization
by introducing a full-fledged physics simulator function
qi+1 = g(qi, ui, θ) that can differentiate through objects’
appearance, geometry, and physical parameters. Here qi ∈
SE(3) × SE(3) is the object and robot end-effector poses
at timestep t and ui is the applied robot force at the end-
effector, which is equal in magnitude to the sensed contact
force but opposite in direction.

Given such a simulator, the world model identification
problem is formulated as solving the following optimization:

argmin
θ

tT

∑
t=t1

L(ôt, ot)

s.t. qi+1 = g(qi, ui, θ) ∀i = 1,⋯, T.

(1)

over a physical motion sequence of T timesteps, with the
objective function L encourages the simulated observation
ôt to match the ground-truth observation ot.

IV. METHOD

In this section, we first detail the object representation,
which is key to our method. Then we describe the differ-
entiable simulator and details on solving the optimization
described in Eqn. 1.

A. Differentiable Object Representation

An ideal object representation for world model identifica-
tion needs to be flexible to allow learning of complex object
geometries, topologies, and appearance properties while be-
ing compatible with rigid body simulators for collision detec-
tion. Topology-agnostic geometries such as point clouds [19]
and GS [9] do not allow one to calculate the penetration
depth between bodies. On the other hand, meshes [15] do
not allow large geometric and topological changes.

We find that the SaP framework [11], when augmented by
additional appearance properties poses an ideal representa-
tion for our purpose. Briefly, this framework represents the
object using a point cloud with normals on the object surface,
denoted as P = {(p ∈ R3, n ∈ R3)}. These normal directions
induce a discrete vector field v(x) = ∑⟨p,n⟩∈P nI[x = p].
SaP then uses Poisson reconstruction [26] to recover an
underlying implicit indicator field χ(x) that describes the
occupancy of the solid geometry, i.e. whether x is inside
or outside the geometry, and matches its gradient field with
v(x) by solving the variational problem:

argmin
χ

∫
Ω
∥∇χ(x) − v(x)∥2,

which amounts to solving the Poisson equation ∆χ = ∇v̇.
SaP discretizes the indicator field χ on a uniform grid
domain Ω, which allows the efficient solution of χ via GPU-
accelerated Fast Fourier Transform (FFT) with well-defined
derivatives. We use a 128 × 128 × 128 discretized grid χ for
all the experiments in this paper.

The indicator field χ is then transformed to a triangle mesh
M with a differentiable marching cubes algorithm [12].
Collision detection can then be easily achieved with standard
techniques for meshes. To enable appearance modeling, we
further augment with a grid of appearance properties, with
the same grid resolution as the one storing the indicator
field χ. The appearance property is then propagated to
the mesh vertices via tri-linear interpolation. In this work,
we only store and render the color field, denoted as ψ,
but other appearance properties can be incorporated in the
same manner as required by more advanced differentiable
rendering equations. The mesh can then be rendered using
any differentiable renderer framework such as [27], [28],
for which we use the open source implementation in Py-
Torch3D [29]. Specifically, at the time instance t, we invoke
the renderer with the object transformed to qt and the camera
transformed to ct. Our parametrization of the object’s physics
and appearance is defined as:

θ ≜ ⟨M(qi), µ,P, ψ⟩,

where the first two parameters are mass-inertial properties
and frictional coefficients, defining the physical properties,
and the last two parameters are the oriented point cloud for
SaP and color field, defining the objects’ appearance.

For the terrain, we simply use an oriented and colored
point cloud Pt to represent the terrain as we do not need
to simulate interactions between 2 terrains. The terrain is
rendered from the colored point cloud with an alpha com-
positor [30] also using the PyTorch3D library and we set the
radius of each point to be 0.015 m.

B. Differentiable Simulator

For our application, we only consider unconstrained rigid
body dynamics with dry frictional contacts. Note that addi-
tional physical constraints for describing objects such as soft
bodies and articulated objects can be potentially incorporated
into our framework and its differentiation has been well-
studied, e.g. in [16].
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Fig. 2. Overview of the proposed fully differentiable pipeline for world model identification from sparse robot observations. Our object representation
couples an oriented point cloud P and a 3D appearance grid ψ. Through a differentiable Poisson solver and differentiable marching cubes, the oriented
point cloud is converted to an indicator grid χ and then a mesh, whose vertex textures are interpolated from the appearance grid ψ. Feeding the object
mesh, physical parameters M and µ, the terrain point cloud Pt, and the robot pushing trajectory and control ⟨et, ut⟩ into a differentiable rigid body
simulator and renderer, the predicted scenes can be rendered. Calculating the loss against observed RGB-D images, the scene shape, appearance, and
physical parameters are jointly optimized with gradient descent.

The governing equation of motion for rigid bodies and the
time discretization method is well-studied and we refer the
readers to Anitescu et al. [31] for details. The equation is
summarized as follows:

M(qi)q̈i = C(qi, q̇i) + J iui + J⊥τ⊥ + J∥τ∥, (2)
with M(qi) being the generalized mass matrix, C(qi, q̇i)
being the centrifugal, Coriolis, and gravitational force,
J i, J⊥, J∥ being the Jacobian matrix for the external, normal,
and tangent contact forces at all the detected contact points,
respectively. Finally, τ⊥, τ∥ are the contact forces. At each
time step, a mixed linear complementarity problem (LCP) is
solved to calculate the constraint forces τ⊥, τ∥, yielding the
final acceleration q̈i, and we then integrate the configuration
forward in time [32], [33] as:

q̇i+1 = q̇i + q̈iδt qi+1 = qi + q̇iδt, (3)
with δt being the timestep size. The mixed LCP problem is
formulated as:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 ≤ τ⊥ ⊥ J⊥T q̇i+1 ≥ 0

0 ≤ τ∥ ⊥ λe + J∥T q̇i+1 ≥ 0

0 ≤ λ ⊥ µτ⊥ − eT τ∥ ≥ 0,

(4)

with e being the unit vector and µ being the frictional
coefficient. λ is an auxiliary variable encoding the stick or
slip frictional state. To differentiate through the simulator,
we adopt the differentiation technique proposed by [14],
[13], where the result of the LCP is made differentiable by
solving with a primal-dual method and performing sensitivity
analysis at the solution to yield derivatives with respect to
the problem data. In this way, the derivatives propagate the
gradient information to the Jacobian matrix J⊥,∥, and finally
to the object geometric parameters P . In summary, Eqn. 2,3,4
defines our differentiable simulator function g. In particular,
we adopt the differentiable simulator proposed by Strecke et
al. [13] for its fast implementation on GPU.

RGB-D 

Camera

Simulation Real World
Fig. 3. The experiment setups for the simulated (left) and physical (right)
experiments. 9 objects are used for simulation with the PyBullet simulator,
including 8 YCB objects and a green box. For the real-world experiments,
three YCB objects (Drill, Mustard, and Sugar) are used. A UR5e arm
equipped with a pusher and an overhead Realsense D435 RGB-D camera
are used. Note that only the circled object in the real-world setup is the
object of interest and everything else is treated as the static terrain.

C. World Model Identification

Even with our jointly differentiable physical and appear-
ance models, solving Eqn. 1 can still be rather challenging.
This is mainly because our initial guess can be very poor,
especially in the occluded region. As a result, the naı̈ve
gradient descent method can take many iterations and is
prone to converging to poor local minima. To mitigate this,
we use two stages of optimization, and we further leverage
3D foundation models trained on web-scale data to generate
good initial guesses of the rigid object in the scene from
partial visual observations.

1) Two-stage Optimization: We note that while the ini-
tial guess can deviate significantly from our observations,
deviations in geometry and appearance can be largely
corrected by considering only the first observation, i.e.



Fig. 4. The pushing trajectories used in the experiments. Left: The 8
starting locations of the floating spherical robot pushing trajectories and 3
pushing directions towards the robot at one of the starting locations for the
Drill object in the simulation experiments. Middle and right: the training
trajectory and 2 sample testing trajectories, with the first and last frames
shown. [Best viewed in color.]

⟨t1, e
t1 , f t1 , ot1 , ct1 ,mt1⟩. Therefore, our first stage consid-

ers only the first time instance and optimizes θ using the
following loss:
L(ôt1 , ot1) =c1Lrgb(ô

t1 , ot1) + c2Ldepth(ô
t1 , ot1)+

c3Lpcd(o
t1 , θ) + c4Lpen(θ) + c5Lbalance(θ)+

c6Lreg(θ, θ0) + c7Lsmooth(P),

with (c1, . . . , c7) denoting weight terms. Here, ôt1 is the
rendered RGB-D image at t1. Lrgb is a loss on the RGB
images, defined as a weighted sum of l1 distance and D-
SSIM terms: Lrgb = (1 − λ)L1 + λLSSIM, where we set
λ = 0.2. Ldepth is the l1 distance on the depth images. When
calculating the three loss terms L1,SSIM,depth, the robot is
masked out according to the segmentation mask mt1 . Lpcd
is a unilateral Chamfer distance between the point cloud
generated from the observed RGB-D image pixels belonging
to the object and the SaP point cloud P , which is defined
as the average of the minimum distance between each point
on the observed point cloud and any point among the SaP
points. The terms Lpen and Lbalance encourage the object to
achieve static force equilibrium while having no penetrations.
Lpen penalizes the object mesh penetrations in the terrain,
and Lbalance = ∑

k
1 ∥p

i+t1
o − pt1o ∥

2 is the sum of the positional
changes of the object from the initial position pt1o over k
steps by simulating forward with no robot actions. In the
case where the initial guess of the object geometry does
not come in contact with the terrain at t1, Lbalance allows
the computation of the gradient information to expand the
geometry towards the terrain once the object falls due to
gravity and contacts the terrain during the k steps. We use
k = 3 for all the experiments in this paper. These two terms
provide a strong hint for the occluded part of the object. For
example, when an object is lying on the table, our RGB-D
observation will not cover the bottom of the object. However,
our model will guide SaP to fill the bottom-side geometries
by encouraging the object to settle on the table. Finally, the
last two terms regularize the object shape, where Lreg is the
L2 norm between the SaP points and the initial SaP points
and Lsmooth is the Laplacian smoothing objective on the
object mesh.

In addition, the use of both Ldepth and Lpcd is necesary.
When only Ldepth is used, if the estimated mesh is smaller
than the ground-truth object geometry, the predicted depth
pixels that are supposed to reach the ground-truth mesh do
not hit the estimated mesh, and there is no gradient infor-

mation for expanding the geometry. Similarly, the observed
point cloud used in Lpcd is based on a partial point cloud of
the object, and SaP has no information about the boundaries
of the object. Ldepth informs our model of the background
area and prevents the object geometries from occupying the
supposed background.

After the first stage, we have tuned our model to match
the first observation. When we move on to the second stage,
we incorporate all timesteps by applying the robot controls.
For this stage, we assume the current estimated geometry
is close to the ground truth and use the simpler loss: L =
c8Lpcd+c9Lrobot, where the first term has the same definition
as in the first stage and Lrobot is the squared distance between
the ground-truth and predicted robot joint angles. Instead of
using the observations of every frame for calculating the loss
that would be computationally very expensive, we apply the
robot control forces from the initial state, integrate forward
in time, and render two intermediate and the last frames for
calculating the losses. During our optimization, the chain of
gradient is back-propagated through the following recursive
rule:

dL(ôti , oti)

dθ
=
∂L

∂θ
+
∂L

∂qi
[
∂qi

∂θ
+

∂qi

∂qi−1
dqi−1

dθ
] ,

where the first two terms ∂L/∂θ, ∂L/∂qi is the derivatives
of the rendering equation, and the remaining terms in the
bracket are the derivatives of the simulator.

2) Geometry Prior: Our method relies on a reasonable
initial guess. Imagine the case with an object settling on the
edge of a table and the camera does not observe the contact
between the two. The initial guess of the occluded part of the
object could be very short and cause the object to directly fall
down without touching the table. This cannot be recovered
by our optimization since the object never hits the table and
there are no gradients for correcting the geometries. To obtain
a reasonable initial guess of the geometries and appearance
of the rigid object of interest from partial visual observations,
we take advantage of large reconstruction models [34] that
predict object 3D models from a single RGB image, trained
on web-scale data. In particular, we use TripoSR [35] in
our experiments with the segmented RGB image of the
object as the input image. Since the generated mesh is scale-
and transform-agnostic, we subsequently apply RANSAC
and scale-aware iterative closest point (ICP) algorithms with
Open3D [36] to register the mesh to the partial object point
cloud, computed from the RGB-D image at the first time
instance.

Finally, in all the experiments of this work, we assume that
the occluded terrain by the object is flat, and complete the
terrain by fitting a plane of points, where the colors match
the nearest visible points of the terrain. In addition, in all
the experiments, we do not optimize the point cloud position
of the terrain and optimize only the colors. Although these
settings are simplifying, we believe a similar approach could
be adopted that predicts the geometry of the occluded rigid
terrain from a geometry prior model and optimizes for the
terrain geometry simultaneously, although more online data



Fig. 5. The predicted and ground-truth poses of the 5 different objects at the end of sampled testing trajectories for the simulation experiments. After
training, the predicted poses are obtained by applying the control forces from the initial pose and integrating forward in time. The predicted object poses
are highlighted with a yellow silhouette and overlaid with the ground-truth object, blue floating spherical robot, and background. [Best viewed in color.]

View 1 View 2 View 3
Fig. 6. The ground-truth (left) and predicted (right) RGB images of 3 novel views of the Drill in simulation. The optimized mesh shape and geometry
match the ground truth well, although lacking the fine details that can not be observed from the top view. The terrain checkers are not as sharp as the
ground truth due to the use of point rendering of the colored terrain point cloud.

Dynamics Parameter Error Trajectory Prediction Error

Method mass (kg) µ Unilateral Chamfer (mm) Pos. (mm) Rot. (○) Trans. Vel. (m/s2)

Ours 0.0728 0.106 8.69 15.5 16.7 0.0351
PhysGS [25] 0.225 0.400 24.2 42.8 31.8 0.436

TABLE I
AVERAGE DYNAMICS PARAMETER IDENTIFICATION AND NOVEL TRAJECTORY PREDICTION ERRORS FOR ALL OBJECTS IN THE SIMULATION

EXPERIMENTS

Fig. 7. Results of three example testing trajectory of the physical
experiments. The predicted poses are obtained by applying the control forces
from the initial pose and integrating forward in time. The predicted object
poses with the optimized θ highlighted with a yellow silhouette are overlaid
with the ground-truth object and robot, and the background rendered from
the optimized simulator. [Best viewed in color.]

may be required to resolve the ambiguities of the contacts
between two occluded geometries.

V. EXPERIMENTS AND RESULTS

To validate our method, we first conduct experiments with
simulated data, and then in the real world.

A. Simulation Experiments

Shown in Fig. 3, we conduct all the simulated experiments
using data collected with the PyBullet simulator [37]. We use
a simple green box object (Box) and 8 objects (Gelatin,
RubiksCube, Spam, TunaCan, Mustard, Bleach,
Drill, and Sugar) from the YCB object dataset [38]. The
objects are placed on a flat surface with checker patterns and
pushed by a floating sphere robot, while a static overhead
camera takes pictures. The world model parameters are first

Initial Optimized Initial Optimized
Fig. 8. The initial guess and optimized shape of the Box object in simulated
experiments and the Sugar object in physical experiments during stage 1.
The algorithm is able to correct the bulging on the underside of the Box that
would intersect the terrain. On the other hand, the initial mesh of Sugar
is too thin and does not touch the terrain. Our algorithm is able to optimize
the shape so that it satisfies physics constraints.

optimized with data collected on one training push, and
evaluated on 23 novel pushes that are drastically different.
Fig. 4 shows the starting positions and the pushing directions
of the pushes for the Drill object. Similar pushes are used
for all the other objects where the starting locations are
adjusted based on the size of the objects. The trajectories
push the objects up to 12 cm and 80○. All the trajectories
have T = 30 time steps with δt = 0.01 s. We use the following
weights for optimization: [c1, c2, c3, c4, c5, c6, c7, c8, c9] =
[10,5000,500,1,1000,100,4000,500,100]. These terms are
not carefully tuned and are set such that each term has a
similar order of magnitude at the start of optimization for
our experiments. The physical parameters we optimize for
include the mass, surface coefficient of friction, the center
of mass, and the rotational inertial. The center of mass is
initialized at the geometry center of the initial shape guess.
The rotational inertia is initialized by treating the object as
a box, whose dimensions are the bounding box of the initial



geometry guess. We assume that the rotational inertia only
has diagonal terms. For all experiments including simulations
and real-world experiments, the surface coefficient of friction
is initialized at 0.2 and the mass is initialized at 0.2 kg.

We first evaluate whether our method can identify the
shape and physical parameters accurately such that it gen-
eralizes well to new physical interactions. We compare our
method against a recently proposed method that represents
the world jointly with Gaussian Splats and physical particles
and allows it to perform both novel-view rendering and
physics-based trajectory predictions. We refer to this method
as PhysGS. This method performs simulation with a particle-
based simulator [39]. In the original paper, the physical pa-
rameters of the particles are arbitrarily set, and virtual forces
are optimized to match the observations and predictions on
the training trajectory. To allow more accurate prediction for
new trajectories, we optimize the total mass and coefficient
of friction of the object particles with grid search using the
partial Chamfer distance between the observed object point
cloud and the predicted object particles on the last time frame
in the trajectory.

We report the quantitative results for dynamics parameter
estimation and novel trajectory predictions for all objects
in the simulation experiments in Table I, which are the
average across all objects. We also shown some qualitative
examples that are representative of the average errors in
Fig. 5. The dynamics parameter estimation error from the
training trajectory, and the average pose error, unilateral
chamfer distance, and the translational velocity error at the
end of the testing trajectories are reported. The final pose and
velocity of the objects are obtained by applying the control
forces and integrating forward in time. Our method identifies
the dynamics parameters accurately and shows low trajectory
prediction errors. We would like to point out in particular that
the average rotation error is heavily skewed by the TunaCan
object since our method currently uses the object surface
point cloud to track the object during stage 2 optimization,
and cannot properly differentiate the rotation of a cylindrical
object. As a result, the average rotation error is 28.0○ for
TunaCan, and we aim to address this issue in future work.
On the other hand, PhysGS generalizes very poorly to the
testing trajectories. While this is partially because of the
lack of proper dynamics parameters and physics-based shape
estimation, we also find that the particle-based simulator is
extremely sensitive to simulator parameters and have poor
physical fidelity, especially for rigid objects. We also show
an example of the initial and optimized geometries of the
Box object in Fig. 8 (left), which demonstrate the ability
of our method to adjust occluded geometry based on the
physics.

Next, we also evaluate the quality of the novel-view
synthesis of our method. For each of the testing objects,
we evaluate the synthesized RGB images from 10 novel
viewpoints around the scene, and our method achieves
0.00225 of mean squared error (MSE), 0.965 of structural
similarity index measure (SSIM) and 26.5 of peak signal-to-
noise ratio (PSNR). We also show some examples of novel

view synthesis of the Drill object in Fig. 6, which matches
the ground truth very well.

B. Physical Experiments

Shown in Fig. 3, we conduct physical experiments with
a UR5e robot arm equipped with an embedded end-effector
F/T sensor and a pusher, and a static overhead RealSense
D435 RGB-D camera. We use one training trajectory and
three testing pushing trajectories that all share the same
starting location but are spaced about 15○ apart as the simu-
lated experiments for 3 YCB objects: power drill (Drill),
sugar box (Sugar), and mustard bottle (Mustard). The
trajectories push the object up to 9 cm and 30○. We use a
total of T = 48 time steps with δt = 0.03 s. We use the same
optimization settings as the simulated experiments.

On average across all testing trajectories and testing ob-
jects, our method achieves a mass identification error of
0.257 kg and 5.66 mm of unilateral chamfer distance between
the observed object point cloud and the predicted object at
the last frame of the trajectory. Note that we only reported
the mass identification error because the ground truth is
very easy to measure while measuring the surface friction
requires a specialized setup. Since we do not have access to
the ground-truth object poses and only have access to the
raw observations, we report the unilateral chamfer distances
between the observed object point cloud and the predicted
object geometry. The train and test prediction results for three
sample trajectories are visualized in Fig. 7. Overall, the errors
are comparable to those from the simulated experiments. In
addition, we show the initial and optimized shape of the
Sugar object in Fig. 8 on the right, where the initial shape is
too thin and does not contact the terrain below. Our algorithm
modifies the occluded geometry to satisfy the physics.

VI. LIMITATIONS

Our method assumes ground-truth object masks from
the scene, which might not always be possible even with
advanced foundational segmentation models. In addition, our
method does not consider more advanced appearance models,
lighting sources, and shadows. As a result, the rendered
scenes could have artifacts that do not match the real-world
observations. Currently, each optimization run is completed
in under 15 mins on a standard PC with an Intel i9-13900KF
CPU, 64 GB of RAM, and a GeForce RTX 4090 GPU.
While this is not ideal for online robotics applications, we
intend to reduce the runtime by using better initial guesses
of geometry and physical parameters from data-driven pre-
trained models and more efficient implementation. Finally,
our method currently struggles on objects whose rotation can
not be properly identified from a surface point cloud, such
as a cylinder. We aim to explore tracking methods that also
leverages surface textures for pose tracking in future work.

VII. CONCLUSION

We propose a novel algorithm to solve the task of identify-
ing objects’ physical properties as well as the geometry and



appearance, a crucial step in downstream robot manipula-
tion tasks. To the best of our knowledge, this is the first
method that allows the joint optimization of all of these
properties. Our method combines the merit of SaP object
representation [12], differentiable collision detection [40],
and differentiable simulation [13]. Although our method
has several limitations, it opens doors to a rich spectrum
of future research topics. Some potential future directions
include extending our method to identify multi-body dy-
namic systems with additional constraints, more advanced
appearance models, and physics-based perception to correct
for wrong object masks.
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