
Semi-Empirical Simulation of Learned Force Response Models for
Heterogeneous Elastic Objects

Yifan Zhu1, Kai Lu2, and Kris Hauser1

Abstract— This paper presents a semi-empirical method for
simulating contact with elastically deformable objects whose
force response is learned using entirely data-driven models.
A point-based surface representation and an inhomogeneous,
nonlinear force response model are learned from a robotic arm
acquiring force-displacement curves from a small number of
poking interactions. The simulator then estimates displacement
and force response when the deformable object is in contact
with an arbitrary rigid object. It does so by estimating dis-
placements by solving a Hertzian contact model, and sums the
expected forces at individual surface points through querying
the learned point stiffness models as a function of their expected
displacements. Experiments on a variety of challenging objects
show that our approach learns force response with sufficient
accuracy to generate plausible contact response for novel rigid
objects.

I. INTRODUCTION

Robotic manipulation of deformable objects has a number
of applications, such as in-home environments, cable routing,
textile handling, handling packaging in automated ware-
houses, and soft tissue modeling in biomedical settings, but
it remains a topic of active research. Common deformation
simulation methods, such as finite element method (FEM) or
mass-spring modeling (MSM), require an object’s geometry
and its material properties to be represented by a volumetric
mesh model. Mesh models are challenging to build from
noisy sensor data, and calibrating appropriate material con-
stitutive parameters is a tedious, time-consuming, and error-
prone process that depends on an appropriate mesh topology
and constitutive equations. Data-driven approaches have been
studied in robotic palpation of biological tissue, where a
robotic probe gathers a dense field of data to estimate tissue
stiffness and identify anomalies.

We envision that robots could use naturalistic data ac-
quisition to model deformable objects, in which behavior
is observed from a small number of interactions and the
model is improved continuously during interaction. Humans
can very quickly generalize from the data gathered during
manipulation to predict plausible outcomes in vastly dif-
ferent scenarios. This paper takes preliminary steps toward
providing robots with similar capabilities. We take a semi-
empirical approach that integrates machine learning with
physics. This general idea is appealing because learning from

*This work was supported in part by NSF grants NRI-#1527826 and
NRI-#1830366.

1: Y. Zhu and K. Hauser are with the Departments of Computer Sci-
ence, University of Illinois at Urbana-Champaign, IL, USA. {yifan16,
kkhauser}@illinois.edu

2: K. Lu is with the Department of Automation, Tsinghua University,
Beijing, China. lu-k16@mails.tsinghua.edu.cn

Fig. 1. Flow of our method. A point interaction model of a deformable
object is first learned through data acquired with the system shown here
after a small number of pokes. The model is then used in a semi-empircal
simulator that solves for the deformation and contact wrench with an
arbitrary rigid object. The color of the deformed object represents the
amount of surface deformation.

data can enhance physics modeling when the physics of
certain phenomenon are not well understood [1]–[3], when
the parameters for the governing physics equations are hard
to identify [4], [5], or when applying the physics equation
is computationally prohibitive [6], [7]. In our approach,
the simulator 1) accepts a point-based model of the object
surface’s force response under displacements, which are
learned from data, and then 2) calculates a resultant contact
wrench for a novel rigid object using analytical calculations.
Our model is quite general, as its deformation response can
be heterogeneous and nonlinear. Moreover, the visuo-tactile
model constructed by our method can overcome camera
calibration error, sensor noise, and “fuzzy” objects with ill-
defined boundaries. It is important to note that we do not
expect a robot to need to touch an object hundreds of times
during naturalistic interaction. Our experiments examine
performance under a tiny fraction of pokes as training data.
Even with only a few touches, reasonably predictive models
can be learned, which suggests that our pipeline is promising
for on-line use in naturalistic interaction.

We evaluate this approach using an experimental testbed



(Fig. 1) consisting of a robot arm equipped with a RGB-
D camera, a tapered probe attached at the end-effector,
and a force-torque (F/T) sensor. Experiments show that our
approach can learn a point deformation model that predicts
force response 0.49 N of root mean squared error (RMSE)
over 5 test objects with 10 interactions each. When making
contact with novel rigid probes, which are a line-shaped
paddle and a cylinder, our simulator’s force prediction has
1.5 N RMSE. This accuracy is comparable to learned models
obtained with the same number of interactions. We also show
an application of our method to planning for packing a rigid
object on top of a deformable object into a box.

II. RELATED WORK

Deformable object modeling has long been studied in
various fields including computer graphics, continuum me-
chanics, and biomechanics. An overview of the existing
methods on deformable object modeling can be found in
Ref. [8]. It still remains a challenge to build models that
match real-world objects accurately both in deformation and
force response.

Several researchers have studied the problem of building
elastic models of real-world object using experimental data.
Frank et al. attempt to build homogeneous FEM models by
first collecting force probing data using a mobile robot arm,
a thin probe, an F/T sensor and a RGBD camera [9]. An
error minimization approach is used to estimate the FEM
model parameters such that the simulations match recorded
data. Boonvisut and Cavusoglu follow a similar scheme to
build FEM models for elastic objects under stretching [10].
Both methods require tens of minutes to perform the error
minimization, making it less likely to be used online. Bickle
et al apply error minimization to inhomogeneous, nonlinear
FEM models [11]. Radial basis functions (RBF) are used
to interpolate the strain-stress relationship in each finite
element, and error minimization optimizes the weights used
for RBF interpolation to match observations. Although being
able to handle more complex materials, the error minimiza-
tion step is prone to being stuck in local minima and the
data acquisition process requires complex apparatus setup,
including multiple cameras, carefully positioned and tuned
light sources, and drawing markers on the testing objects.

Empirical data have also been used to tune MSM and
meshless methods. Deussen et al use simulated annealing
to estimate the elastic properties of an MSM object model,
given data from simulation experiments [12]. Burion et al
solve a similar problem using a particle filter [13]. Pauwels
et al. build meshless models of homogeneous 2D foams
whose shape upon contact with a rigid object depends on
a deformability constant. This constant is estimated by error
minimization of real-world data. Because the method only
simulates deformable shape, it is unable to predicte forces at
contacts.

A highly related topic is robotic palpation. Yamamoto et al
use a robot equipped with an F/T sensor to poke at discrete
locations on flat phantom tissue to estimate the stiffness
across the object surface and find anomalies [14]. Salman

et al. adopt a similar approach but select the next poking lo-
cation using Bayesian optimization [15]. Goldman et al. first
design a hybrid motion-force controller to follow cycloidal
paths on a tissue surface to estimate the shape, then palpate
at discretized surface locations with multiple grid resolutions
to measure the impedance matrices across the surface [16].
Liu et al. map the stiffness by moving a mechanical roller
across the tissue with a robot arm [17]. While these works
are able to map the stiffness of heterogeneous tissues, force
response is assumed to be linear.

III. POINT DEFORMATION MODEL LEARNING

Fig. 1 shows the flow of our overall system. The first stage
of our system learns a visuo-tactile model of the deformable
object using data. We shall discuss the learning stage in the
current section, leaving the discussion of simulation for Sec-
tion IV. We assume that the object is elastic, quasistatic, and
that interaction forces are dominated by normal deformation
rather than friction and shear deformation. We hope to relax
these assumptions in future work.

The point deformation model consists of an equilibrium
surface model, and a force response model. The equilibrium
surface model is a set S of points x ∈ R9, with each
point x = [px, py, pz, r, g, b, nx, ny, nz], representing posi-
tion, color, and (outward) normal, respectively. The position
and normal are represented in the world frame. The force
response model is denoted as f = y(x, d), where f ∈ R is
force magnitude in the normal direction, x is a point in S, and
d ∈ R is displacement. Letting n = [nx, ny, nz] ∈ R3 denote
the normal in x and p = [px, py, pz] ∈ R3 the position, this
map gives the force a point probe would feel in the direction
of n when the point is moved to position p− d · n.

A. Data Collection

Although our methods are applicable to naturalistic inter-
actions, for the comparison purposes in this paper we employ
a separate data acquisition stage similar to Frank et al [9] to
build a ground truth dataset. The deformable object is laid
on a flat surface, and it is assumed to return to its original
position when pressed in the normal direction. If it is found
to move while pushed, then a central point on the bottom of
the object is affixed to the table using Velcro tape. In future
work it may be possible to simply track the movement of
the object during acquisition. We include 5 different testing
objects in our experiments, Sloth, Vest, Lamb, Shoe, and
Bird, shown in Fig. 2a. Sloth and Bird are stuffed animals,
Vest and Shoe are clothing items, and Lamb is a piece of
lamb leg consisting of muscle, fat, and bone. Each object
has varying stiffness across the object surface. The regions
of interest of the objects are the surfaces facing up when
the objects are laid flat on a table, with the exception that
we use only the face region of the sloth due to poor visual
perception on the furry torso.

To build a 3D point cloud of the equilibrium surface, a
wrist mounted RGB-D camera is used. Some objects need a
few scans from different angles to generate a complete point



(a) Sloth, Vest, Lamb, Shoe, and
Bird objects, along with rigid
probes used in testing.

(b) Ground truth data on Lamb, with
color showing force felt at d = 0.5
mm.

Fig. 2. The objects and probes used in the experiments. Data is gathered
using the point probe, and the simulator generalizes force predictions to the
line and cylinder probes.

cloud. Open3D [18] is applied to perform outlier removal
and normal estimation.

To capture ground truth force response data, we randomly
select a set of locations on the object to be poked with a
point probe, shown in Fig. 1. During experiments, we collect
data on a uniform grid, and randomly select among these
locations to be training data, and the rest to be testing data.
To complete one probing action at a point x, we align the
point probe’s axis with the point’s surface normal. Starting at
a user-specified distance from the surface, the probe pushes
in the negative normal direction at a constant speed of 2mm/s
until reaching a force threshold, which is set to 3-5 N in
our experiments depending on the overall stiffness of the
testing objects. The amount of displacement and force in the
normal direction, measured by the wrist mounted F/T sensor,
is recorded at 250 Hz. As a result, our force measurements
are quite sparse in the spatial features, while being quite
dense in force / displacement. One example of the collected
data on the Lamb is shown in Fig. 2b.

If both the visual and tactile data have no error, then we
would expect the force felt by the point probe tip away
from the object surface to be zero and positive otherwise.
However, this is often not the case. As shown in Fig. 4a,
we often observe nonzero forces beginning anywhere from
-5 to 5 mm of displacement. This is largely due to error in
the calibration and bias in the camera’s depth estimates, and
further motivates the use of learning to correlate visual and
tactile data.

For validation purposes, we collect second and third sets of
poking data with a line probe and a cylindrical probe (capped
at 3-14 N, depending on the objects), shown in Fig.2a. These
are not used for training, but only for evaluation of how well
our simulation model can generalize from point probe data.
We probe once at each location using the cylinder probe, and
three times with the line probe at each location with random
orientation changes (about the local probe x-axis). We also
record the torque about the EE frame center. The parameters
of all three datasets are summarized in Table 1.

TABLE I
STATISTICS OF COLLECTED DATA ON THE TESTING OBJECTS

Point Cloud Point Probe Line Probe Cylinder Probe
Sloth 67,923 121 363 121
Vest 62,318 116 348 116
Lamb 18,059 94 276 94
Shoe 32,408 96 192 96
Bird 41,515 116 315 116

B. Force Response Model Learning

The next step in our pipeline learns to predict force
responses at different locations on the object surface. Recent
advancements in automated machine learning (AutoML)
have greatly reduced the amount of manual effort needed
to select a regression model and tune hyperparameters. In
this paper we use the AutoML [19] package from scikit-
learn [20] to perform the regression tasks.

We compare performance of different types of regressors.
The AutoML package searches among ensembles of different
types of regressors and preprocessors and runs until a user-
specified time limit is reached. We can also specify the type
of regressors during AutoML training to reduce the number
of hyperparameters that need to be optimized, thus improving
training speed. Another option is to select an appropriate
regressor directly, without relying on AutoML to select the
hyperparamters. In particular, we test the following methods:
(1) AutoML (Auto-M) trained for 360 s (2) AutoML with
Extra Trees as the regressor type (Auto-ET) trained for 30 s;
(3) Adaboost (AB), Gradient Boosting (GB), Random Forest
(RF), and Extra Trees (ET), all trained using scikit-learn
with default parameters. Fig. 3b show the results on the
Lamb model. Although single regressors can train a model in
less 1 s, Auto-ET generally achieves the best results in 30 s.
If Auto-M were to be given more training time, it could
potentially learn a better model, but doing so would require
hours or even days of training. We settle on Auto-ET for
the rest of the paper given its balance between speed and
accuracy on our dataset. The resulting force predictions that
evolve after 2, 5, 10 locations are used as training data for
a 0.5 mm displacement on Lamb are shown in Fig. 4.

Results with Auto-ET on all 5 testing objects are shown
in Fig. 3a. The Shoe and the Vest are the hardest to learn
because they are not completely elastic and are made of com-
posite materials, resulting in significantly varying stiffness
across their surface.

Prediction speed per point varies with the query size,
because of query overhead. With 1 point in each query, it
takes ≈17 ms per point, while with 10,000 points per query,
it takes ≈0.015 ms per point. Also, prediction speed is not
directly related to the number of training points.

IV. SEMI-EMPIRICAL SIMULATOR

The second phase of our pipeline estimates reaction forces
between the deformable object and a contacting rigid object.
The rigid object is represented as a 3D surface mesh M
defined in the global frame. The contact detector determines
if it is in contact with the deformable object’s equilibrium



(a) Testing error on each object us-
ing Auto-ET, with varying training
set size.

(b) Comparing testing error between
regressors, over all objects.

Fig. 3. Breakdown of learning curves for learning force response models.
Regressors are trained over 10 sampled subsets of the ground truth dataset,
and plots show RMSE mean and variance across samples.

(a) Collected force vs d at one
point on Lamb.

(b) 2 locations

(c) 5 locations. (d) 10 locations.

Fig. 4. Collected force-displacement curve at one point and force
predictions on the Lamb object, learned with different numbers of poking
locations. Poking locations are indicated as circles, colored by the true force.
d is set to be 0.5 mm. Because of camera bias, there is already significant
amount of force at this depth. [Best viewed in color]

surface model S, and if so, which points must be displaced to
resolve the contact. The contact force solver then computes
the 3D reaction force and torque and the deformed shape of
the object.

A. Contact Force Solver

Classic Herztian contact theory predicts that displacement
at a surface point on a deformable object will cause neigh-
boring surface points to move in a manner described by a
function of distance and material properties (Fig. 5a). Hence,
we cannot simply sum the forces caused by each indepen-
dent point displacement, but instead have to account for
correlations in displacement. We assume that normal forces
and displacements are the dominant effect, and experiments
on our object set suggest this assumption is reasonable for
normally-displaced objects.

(a) A point indentation moves
nearby points on the deformable
object.

(b) Displaced points calculated by
the collision detector (red) vs ac-
tual displacements (blue).

Fig. 5. Definitions used in the surface deformation model.

Let di denote the nominal displacement of a surface point
at a contact patch, we assume that it consists of both dis-
placement caused by neighboring point displacement and that
actually contributes to the total force, which we call actual
displacement and denote as d̃i. We solve for non-negative
actual displacements that are no greater than the nominal
displacements. A smaller nominal displacement would indi-
cate penetration, while a negative actual displacement would
cause the deformable to apply a negative (pulling) force on
the rigid object at that point (Fig. 5b).

1) Nominal Displacement Calculation: To calculate nom-
inal displacements of the deformable object’s surface points
we use collision detection and estimate penetration depths.

To do so, we first discretize the surface of the rigid object
by placing equally spaced points on edges and 2D grids on
facets based on a user-selected discretization. Via experi-
mentation, we found that simulation results are relatively
insensitive to the selection of this discretization, and we use
a 3 mm resolution for all experiments.

Next, we find the pairs of rigid surface points and the
deformable surface points that will be touching after de-
formation and the nominal displacement of the deformable
surface points. Point correspondence is calculated by pro-
jecting all the points to a 2D plane and performing nearest-
neighbor searches. We let a be the approach direction of the
rigid object and the normal of the projection plane, shown
in Fig. 6. To better approximate the shape of the underlying
continuous surface, we average the nominal displacements
of the the 3 nearest deformable surface points for each
rigid surface point. Each nominal displacement is calculated
according to

di = −(prigidj
− pdeformablei

)T · ndeformablei , (1)

where pdeformablei
,ndeformablei ∈ R3 are the equilibrium

surface position of point i and its associated normal. We
average the equilibrium positions and nominal displacements
of the 3 points to obtain the estimated equilibrium surface
point and displacement, which we refer to as q and d. By
keeping only the points with d > 0, we have N pairs of rigid
surface points and its corresponding estimated equilibrium
surface points along with nominal displacements.

2) Force Solving: The force solver uses the nominal dis-
placements calculated above combined with an indentation
basis function to compute the actual displacements.

The shape function is defined as follows. For each pair of
points on the deformable object, we define a shape function
g(r) : R → R to describe the correlation of a point



Fig. 6. An illustration of how the nominal displacements are calculated
for a polyhedral rigid object.

indentation on its neighborhood. Here r is the Euclidean
distance between 2 points on the equilibrium surface, and
we use the inverse function:

g(r) = c/(c+ r) (2)

f(r) describes an inverse relationship between points’ rel-
ative displacement and equilibrium surface distance, which
matches the Hertzian theory. The constant c > 0 is picked by
observation. However, for future work, we could determine
this constant using a camera tracking the shape of deforma-
tion during poking. While this constant may actually vary
across the object surface, we keep it constant across the
object in this paper.

By calculating the relative distance ri,j between all pairs
of deformable points qi and qj in collision with the rigid
object, we obtain a linear complementary problem (LCP)
relating nominal and actual displacements:

w =


d1
d2
...
dn

−

g(r1,1) g(r1,2) . . . g(r1,n)
g(r2,1) g(r2,2) . . . g(r2,n)

...
...

. . .
...

g(rn,1) g(rn,2) . . . g(rn,n)



d̃1
d̃2
...
d̃n

 (3)

0 ≤ w ⊥ [d̃1, d̃2, . . . , d̃n]T ≥ 0,

where the subscripts denote the indices of the deformable
surface points in collision. When there are not any duplicated
points, i.e. g(ri,j) 6= 1 except for i = j, this symmetric
matrix is invertible. We solve the LCP by iteratively as-
suming equalities, solving the system of linear equations
by matrix inversion, and removing the points with negative
actual displacements.

From the actual displacements we sum the forces predicted
by the point deformation model to obtain the contact wrench.
Given the Nfinal points with positive actual displacements,
the total response wrench (Ftotal, τtotal) on the object are
calculated as follows:

fi = y([qi, di])− y([qi, di − d̃i])
Ftotal = Σ

Nfinal

i=1 fi · ni

τtotal = Σ
Nfinal

i=1 (r̃j)× (fi · ni),

(4)

where r̃j is the vector from the torque center to the corre-
sponding rigid body point prigidj

.

Fig. 7. Predictions errors of our semi-empirical simulator on novel rigid
objects and that of pure data-driven models. Errors on different objects are
shown in different colors. We also include the errors of the point models
used in predictions as a reference.

To predict the displacement of the entire object, not only
the points in contact, we sum up contributions from the shape
function over every positive actual displacement.

B. Experiments

Throughout this section, we use the point deformation
models trained with Auto-ET and data from 10 poking
locations. All implementation is performed in Python code
with the Numpy package for linear algebra, and all timing
is conducted on a desktop PC with an Intel i7 3.8GHz
processor.

1) Simulation accuracy for Line and Cylinder contact:
Fig. 7 shows evaluation of our simulator with line and
cylinder probe contact in predicting 3D force and torque
vectors. The simulator prediction errors are compared to pure
learning using the correct geometry, trained directly on 10
pokes from the ground truth line and cylinder probing data,
where Auto-ET is also used as the regressor. We notice
that the actual displacements calculated could exceed the
range of displacements in the point training data. We simply
extrapolate the training data following the estimated force-
displacement slope to incorporate all possible queries from
the simulator. Overall, our simulator performs slightly worse
than pure learning, better on Lamb and Bird, and worse on
Vest and Shoe. We believe this is mainly due to the fact
that Vest and Shoe are made of composite materials with
a mixture of elastic and inelastic components. As a result,
shape functions approximate the deformation of these objects
sub-optimally and lead to errors in the simulator. The key
advantage of our method is that we do not need to re-acquire
a new training set, and we can also predict force response
for different rolls and pitches of the rigid objects, which are
not included as features in the learning-only training set.

2) Simulation Visualization: We illustrate our simulator
by visualizing the simulation of a line or cylinder probe
poking straight at different objects, resembling the data
collection process in Section III.A. An example is shown
in Fig. 8a. The simulation frames are displayed in Fig. 9. As
the probes penetrate deeper, the calculated actual displace-
ments also increase, thus deforming the entire surface more



(a) Contact with a line probe. (b) Robot packing setup.

Fig. 8. Simulation experiments, Lamb object.

(a) Lamb probed by a line
probe.

(b) Sloth probed by a line probe.

(c) Shoe probed by a
line probe.

(d) Bird probed by a
cylinder probe.

(e) Vest probed by a
cylinder probe.

Fig. 9. Simulation of the line and cylinder probes poking straightly at
all 5 experiment objects, with the numbers indicating the amount of probe
displacements. The objects are colored with the displacements of the surface
points, caused by the probes. [Best viewed in color]

significantly, calculated by the shape function. We can see
grooves on the Lamb, the Bird, and the Sloth that fit the
probe geometry at deep penetration. The Shoe and the Vest
are stiffer objects, with c in the shape function much greater
than the other 3 objects. As a result, the grooves are harder
to observe.

3) Application to a Packing Problem: We consider a
simple packing problem as an illustration of our approach,
shown in Fig. 8b. Given a rigid box with a deformable
object (the Lamb) already packed, we would like to know
if the robot can pack another rigid item (a sphere, with
diameter = 40 mm and discretized into 150 surface points)
into the box. In particular, we would like to know at what
positions in the box the sphere can be placed such that its
interaction force with the deformable object does not exceed
2 N. We perform a grid search over the x-y-z position of the
rigid sphere centroid inside the box, where z starts with the
maximum allowed height in the box and finishes the search

(a) The minimum height at which
the rigid sphere can be packed under
force threshold 2 N.

(b) Computation time vs number of
contacts, showing total time (ttotal),
displacement calculation (td), colli-
sion detection (tc), and point model
queries (tm).

Fig. 10. Results from the planning problem.

in the negative z direction once the interaction force limit
is exceeded, shown in Fig. 8b. A plot of minimum possible
height of the sphere on the x-y grid is shown in Fig. 10a.

On average in this experiment, a contact reaction force
query takes 0.086 s. Each query consists of 0.0738 s of
collision detection, 0.010 s of querying the point model, and
0.0017 s of LCP solving by our simulator. The average com-
putation time as a function of the number of detected contact
points m is plotted in Fig. 10b. The time for LCP increases
cubically with m, because it mainly involves inverting a
dense matrix. The time for querying the point model stays
somewhat constant. There is a lot of room for improvement
in speed, including implementation in a compiled language,
better collision detection algorithms [21], and parallelization.

V. CONCLUSION

The paper proposed a 2-stage data-driven framework to
learn and simulate the force responses of heterogeneous elas-
tic objects. In the first stage, a point deformation model of a
testing object is learned via a robot arm poking at the object
a few times. In the second stage, a semi-empirical simulator
predicts the contact wrench between the deformable object
and a novel rigid object by integrating analytic calculation
and the learned point model to obtain the expected restoring
forces at a series of contact points and summing them.

For future work, we would like to relax several assump-
tions made in this paper. First, learning and generalizing
shear and friction forces with small numbers of touches is an
open problem. Perhaps the deformation and force response
of a novel deformable object can be bootstrapped by transfer
learning from an object that has already been acquired. We
would also like learn the deformation and force response of
an object while it is undergoing gross movements, separating
the rigid body and elastic components of the movement. This
could also be extended to handle plastic deformation. Finally,
we would like to enhance our simulator to handle combined
rigid and elastic deformation, as well as contact between
deformable objects.

ACKNOWLEDGMENT

We thank Joao M. C. Marques for proofreading the paper.



REFERENCES

[1] J. Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason, “A Convex
Polynomial Force-Motion Model for Planar Sliding : Identification and
Application,” IEEE Int. Conf. Rob. Aut., no. 3, pp. 372–377, 2016.

[2] A. Kloss, S. Schaal, and J. Bohg, “Combining learned and an-
alytical models for predicting action effects,” in arXiv preprint
arXiv:1710.04102, 2017.

[3] J. Wu, J.-x. Wang, and H. Xiao, “Physics-Informed Machine Learning
for Predictive Turbulence Modeling: A Priori Assessment of Prediction
Confidence,” in arXiv preprint arXiv:1607.04563, 2016.

[4] M. Raissi and G. E. Karniadakis, “Hidden physics models :
Machine learning of nonlinear partial differential equations,” Journal
of Computational Physics, vol. 357, pp. 125–141, 2018. [Online].
Available: https://doi.org/10.1016/j.jcp.2017.11.039

[5] G. Carleo, I. Cirac, L. Cranmer, KyleDaudet, D. Bourse, M. Schuld,
L. Vogt-maranto, and L. Zdeborová, “Machine learning and the
physical sciences,” 2019.

[6] Y. Zhu, L. Abdulmajeid, and K. Hauser, “A Data-driven Approach for
Fast Simulation of Robot Locomotion on Granular Media,” in IEEE
Int. Conf. Rob. Aut., 2019.

[7] A. Oishi and G. Yagawa, “Computational Mechanics Enhanced by
Deep Learning,” Comput. Methods Appl. Mech. Engrg., vol. 327, pp.
327–351, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.cma.
2017.08.040

[8] A. Nealen, M. Matthias, R. Keiser, E. Boxerman, and M. Carlson,
“Physically Based Deformable Models in Computer Graphics,” Com-
puter Graphics Forum, vol. 25, no. 4, pp. 809–836, 2006.

[9] B. Frank, R. Schemedding, C. Stachniss, M. Teschner, and W. Burgard,
“Learning the elasticity parameters of deformable objects with a
manipulation robot,” in IEEE/RSJ Int. Conf. Intel. Rob. Sys., no.
October, 2010.

[10] P. Boonvisut and M. C. Cavusoglu, “Estimation of Soft Tissue Me-
chanical Parameters From Robotic Manipulation Data,” Transactions
on Mechatronics, vol. 18, no. 5, pp. 1602–1611, 2013.

[11] B. Bickel, M. Bächer, M. A. Otaduy, W. Matusik, H. Pfister, and
M. Gross, “Capture and modeling of non-linear heterogeneous soft
tissue,” in SIGGRAPH, New York, New York, USA, 2009, p. 1.

[12] O. Deussen, L. Kobbelt, and T. Peter, “Using Simulated Annealing
to Obtain Good Nodal Approximations of Deformable Bodies,” in
Eurographics Workshop, no. September, 1995.

[13] S. Burion, F. Conti, A. Petrovskaya, C. Baur, and O. Khatib, “Iden-
tifying Physical Properties of Deformable Objects by Using Particle
Filters,” in IEEE Int. Conf. Rob. Aut., 2008, pp. 1112–1117.

[14] T. Yamamoto, B. Vagvolgyi, K. Balaji, L. L. Whitcomb, and A. M.
Okamura, “Tissue Property Estimation and Graphical Display for
Teleoperated Robot-Assisted Surgery,” IEEE Int. Conf. Rob. Aut., pp.
4239–4245, 2009.

[15] H. Salman, E. Ayvali, R. A. Srivatsan, Y. Ma, N. Zevallos, R. Yasin,
L. Wang, N. Siman, and H. Choset, “Trajectory-Optimized Sensing for
Active Search of Tissue Abnormalities in Robotic Surgery,” in IEEE
Int. Conf. Rob. Aut., 2018.

[16] R. E. Goldman, A. Bajo, and N. Simaan, “Algorithms for autonomous
exploration and estimation in compliant environments,” Robotica,
vol. 31, no. 1, 2013.

[17] H. Liu, D. P. Noonan, B. J. Challacombe, P. Dasgupta, L. D. Senevi-
ratne, and K. Althoefer, “Rolling Mechanical Imaging for Tissue
Abnormality Localization During Minimally Invasive Surgery,” IEEE
Transactions on Biomedical Engineering, vol. 57, no. 2, pp. 404–414,
2010.

[18] Q.-y. Zhou, J. Park, and V. Koltun, “Open3D : A Modern Library for
3D Data Processing,” arXiv:1801.0984, 2018.

[19] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and Robust Automated Machine Learning,” in
Advances in Neural Information Processing Systems, 2015, pp. 2962—
-2970.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.Perrot, and
E. Duchesnay, “Scikit-learn : Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[21] R. Weller, “A Brief Overview of Collision Detection,” in New Geo-
metric Data Structures for Collision Detection and Haptics, 2013, pp.
9–46.


